API Reference
This page gives an overview of all public pyxations objects, functions and methods.
pre_processing
PreProcessing
Pyxations preprocessing: trial segmentation, quality flags, and saccade direction. All mutating functions are safe (copy-aware) and validate required columns.
Tables (pd.DataFrame) expected: samples: typically contains 'tSample' (ms), gaze columns (e.g., 'LX','LY','RX','RY' or 'X','Y') fixations: typically contains 'tStart','tEnd' and optional 'xAvg','yAvg' saccades: typically contains 'tStart','tEnd','xStart','yStart','xEnd','yEnd' blinks: typically contains 'tStart','tEnd' (optional) user_messages: must contain 'timestamp','message'
New columns created: - All tables after trialing: 'phase', 'trial_number', 'trial_label' (optional) - samples/fixations/saccades: 'bad' (bool) after bad_samples() - saccades: 'deg' (float degrees), 'dir' (str) after saccades_direction()
Source code in pyxations/pre_processing.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 | |
bad_samples(screen_height=None, screen_width=None, *, mark_nan_as_bad=True, inclusive_bounds=True)
Mark rows as 'bad' if any available coordinate falls outside screen bounds. Applies to samples, fixations, saccades. (Blinks unaffected.)
If width/height not provided, will use metadata.screen_* if available.
Source code in pyxations/pre_processing.py
get_timestamps_from_messages(messages_dict, *, case_insensitive=True, use_regex=True, return_match_token=False)
Extract ordered timestamps per phase by matching message substrings/patterns.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
messages_dict
|
dict
|
e.g., {'trial': ['TRIAL_START', 'BEGIN_TRIAL'], 'stim': ['STIM_ONSET']} |
required |
case_insensitive
|
bool
|
If True, ignore case during matching. |
True
|
use_regex
|
bool
|
If True, treat entries as regex patterns joined by '|'; otherwise escape literals. |
True
|
return_match_token
|
bool
|
If True, also creates/updates a 'matched_token' column with the first matched pattern. |
False
|
Returns:
| Type | Description |
|---|---|
Dict[str, List[int]]
|
Ordered timestamps in ms for each key. |
Source code in pyxations/pre_processing.py
process(functions_and_params, *, log_recipe=True, recipe_filename='preprocessing_recipe.json', provenance_filename='preprocessing_provenance.json')
Run a declarative preprocessing recipe, e.g.: pp.process({ "split_all_into_trials_by_msgs": { "start_msgs": {"trial": ["TRIAL_START"]}, "end_msgs": {"trial": ["TRIAL_END"]}, }, "bad_samples": {"screen_height": 1080, "screen_width": 1920}, "saccades_direction": {"tol_deg": 15}, })
Unknown function names raise a helpful error.
Source code in pyxations/pre_processing.py
saccades_direction(tol_deg=15.0)
Compute saccade angle (deg) and cardinal direction with tolerance bands.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
tol_deg
|
float
|
Half-width of the acceptance band around 0°, ±90°, and ±180° for classifying right/left/up/down. |
15.0
|
Source code in pyxations/pre_processing.py
save_metadata(filename='metadata.json')
Persist metadata next to derivatives for reproducibility.
set_metadata(coords_unit=None, time_unit=None, pupil_unit=None, screen_width=None, screen_height=None, **extra)
Update session-level metadata used in bounds checks and documentation.
Source code in pyxations/pre_processing.py
split_all_into_trials(start_times, end_times, trial_labels=None, *, allow_open_last=True, require_nonoverlap=True)
Segment samples/fixations/saccades/blinks using explicit times.
Source code in pyxations/pre_processing.py
split_all_into_trials_by_durations(start_msgs, durations, trial_labels=None, **msg_kwargs)
Segment using start message patterns and per-trial durations (ms).
Source code in pyxations/pre_processing.py
split_all_into_trials_by_msgs(start_msgs, end_msgs, trial_labels=None, **msg_kwargs)
Segment tables using start and end message patterns.
Source code in pyxations/pre_processing.py
SessionMetadata
dataclass
Lightweight metadata container saved alongside derivatives.
Source code in pyxations/pre_processing.py
bids_formatting
dataset_to_bids(target_folder_path, files_folder_path, dataset_name, session_substrings=1, format_name='eyelink')
Convert a dataset to BIDS format.
Args: target_folder_path (str): Path to the folder where the BIDS dataset will be created. files_folder_path (str): Path to the folder containing the EDF files. The EDF files are assumed to have the ID of the subject at the beginning of the file name, separated by an underscore. dataset_name (str): Name of the BIDS dataset. session_substrings (int): Number of substrings to use for the session ID. Default is 1.
Returns: None
Source code in pyxations/bids_formatting.py
eye_movement_detection
visualization
utils
Visualization
Source code in pyxations/visualization/visualization.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 | |
plot_multipanel(fixations, saccades, display=True)
Create a 2×2 multi‑panel diagnostic plot for every non‑empty
phase label and save it as PNG in
Source code in pyxations/visualization/visualization.py
scanpath(fixations, screen_height, screen_width, folder_path=None, tmin=None, tmax=None, saccades=None, samples=None, phase_data=None, display=True)
Fast scan‑path visualiser.
• Vectorised: no per‑row Python loops
• Single pass phase grouping
• Uses BrokenBarHCollection for fixation spans
• Optional asynchronous PNG write via ThreadPoolExecutor (drop‑in‑ready, see comment)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
fixations
|
DataFrame
|
Polars DataFrame with at least |
required |
screen_height
|
int
|
Stimulus resolution in pixels. |
required |
screen_width
|
int
|
Stimulus resolution in pixels. |
required |
folder_path
|
str | Path | None
|
Directory where 1 PNG per phase will be stored. If None, nothing is saved. |
None
|
tmin
|
int | None
|
Time window in ms. If both |
None
|
tmax
|
int | None
|
Time window in ms. If both |
None
|
saccades
|
DataFrame | None
|
Polars DataFrame with |
None
|
samples
|
DataFrame | None
|
Polars DataFrame with gaze traces ( |
None
|
phase_data
|
dict[str, dict] | None
|
Per‑phase extras:: |
None
|
display
|
bool
|
If False the figure canvas is never shown (faster for batch jobs). |
True
|
Source code in pyxations/visualization/visualization.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 | |